US009164750B2

a2 United States Patent

Arpirez

US 9,164,750 B2
Oct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MANAGING TARGET COMPUTER USING
ENCAPSULATED FILE

(75) Inventor: Julio Cesar Arpirez, Madrid (ES)

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 2086 days.
(21

Appl. No.: 10/375,198

(22) TFiled: Feb. 28, 2003

(65) Prior Publication Data

US 2004/0172407 A1l Sep. 2, 2004

Int. CL.
GO6F 9/46
GO6F 9/445
U.S. CL
CPC
Field of Classification Search

CPC GOGF 17/00; GOGF 17/30
USPC 707/10, 103, 204; 709/203
See application file for complete search history.

(51)
(2006.01)
(2006.01)
(52)

.. GOGF 8/65 (2013.01)
(58)

(56) References Cited
U.S. PATENT DOCUMENTS
5,832,511 A * 11/1998 Becketal.coccvvvninnnnn /1
6,026,500 A * 2/2000 Topffetal.cccoovnennn 714/26
6,098,098 A * 82000 Sandahletal. . .. 709/221
6,535,894 B1* 3/2003 Schmidtetal.c....c..... /1
6,542,908 B1* 4/2003 ImS ..cocoovvvniiivineneiciiennn /1
6,718,364 B2* 4/2004 Connelly et al. 709/203
6,757,685 B2* 6/2004 Raffaeleetal.cccocee.e. /1
6,766,353 B1* 7/2004 Linetal. 709/203
6,920,608 B1* 7/2005 Davis 715/209
6,941,510 B1* 9/2005 Ozzieetal. 715/234
6,947,943 B2* 9/2005 DeAnnaectal. . . 717/120
7,730,111 B2* 6/2010 DeAnnaectal. 707/803
2003/0050932 Al* 3/2003 Paceetal. ...cccoerennee 707/100
OTHER PUBLICATIONS

BEA Systems, “Deploying EJBs to WebLogic Server”, Dec. 22,
2001, BEA Systems, pp. 1-7.*

* cited by examiner

Primary Examiner — Farhan Syed

(74) Attorney, Agent, or Firm — Burns, Doane, Swecker &
Mathis LLP

(57) ABSTRACT

An encapsulated file is accessed at a management computer.
The encapsulated file contains plural files and a deployment
descriptor. The deployment descriptor is used to update the
management computer about the plural files. A function is
executed using at least one of the plural files.

11 Claims, 3 Drawing Sheets

FILES

221

v 44
SERVICE BULDER
ENCAPSULATED
FILE CONSTRUCTOR
USER INTERFACE

| ~221

208

0

ENCAPSULATED
FILE

DEPLOVHENT
a DESCRIPTOR

SAVE SOURCE CO

PLURAL 208~ [[GENERATED CODE |
FILES ™ EXECUTABLE SCRIPT
20 FILES SCRIPT
MANAGEMENT! "] Pi;%ﬁﬁgk """"""""""
COMPUTER | | HIGHERLEVEL
{ | SFTwARE | SOFTWARE | DEFLOYMENT
23 W
LS 2 S 0
i 7] " §
204 MEWORY (ENCAPSULATED FILE) 213
YRR }I 4 : REPOSITOERJCAPSULATEI{
MANAGER | ENCAPSULATED FILE
: FLE PLURAL FILES
""""""""""""" MAPPING
FODER [>~2n
EXECUTABLE
FILE (SCRIPT)
OTHER NETWORK
- ELEMENTS -
%8
/ Z /
TARGET TARGET TARGET
COMPUTER | | COMPUTER | | COMPUTER

U.S. Patent Oct. 20, 2015 Sheet 1 of 3 US 9,164,750 B2

ACCESSING AN ENCAPSULATED FILE CONTAINING PLURAL FILES
AND A DEPLOYMENT DESCRIPTOR ™~102

Y

USING THE DEPLOYMENT DESCRIPTOR TO UPDATE THE
MANAGEMENT COMPUTER ABOUT THE PLURAL FILES ™~104

\

EXECUTING A FUNCTION USING AT LEAST ONE OF THE PLURAL
FILES ™~106

FIG. T

U.S. Patent Oct. 20, 2015 Sheet 2 of 3 US 9,164,750 B2
FILES
R
SERVICE BULDER | 221
ENCAPSULATED
 [FILE CONSTRUCTOR
222-T| USER INTERFACE 20\8
ENCAPSULATED
FILE
DEPLOYMENT
201 21" DESCRIPTOR
N ENVIRONMENT
VARIABLES
[SAVE SOURCE CODE]
PLURAL 209~ [GENERATED CODE |
FILES™\ EXECUTABLE SCRIPT |
200 FLES 3\ [SCRPT__ |
/
MANAGEMENT! ~ — PR&%ENSHESR ‘ ;
COMPUTER : |HIGHER LEVEL ;
| soFwaRe | soFwaRe | DERIOWENT\
: 223 W L— B
C"’\'zzzs R ERRRRRREREEEEIA "
’: /210 : Y \
2047 ! [MEMORY (ENCAPSULATED FILE) 213
| ookt ; i REPOSHOEI\TCAPSULATE[{
! MANAGER Lo 4—lencapsuiaTen AILE
! FILE
. | PLURAL FILES
""""""""""""" MAPPING
FOLDER _ [™-211
EXECUTABLE
| FILE (SCRPY)
OTHER NETWORK
ELEMENTS
220 216
a /
TARGET TARGET TARGET
COMPUTER | | COMPUTER| | COMPUTER

FIG. 2

U.S. Patent Oct. 20, 2015 Sheet 3 of 3 US 9,164,750 B2

ACCESSING THE ENCAPSULATED FILE CONTAINING PLURAL FILES,
AT LEAST ONE OF WHICH IS AN EXECUTABLE FILE FOR ™-302
EXECUTION ON ATARGET COMPUTER

\

EXTRACTING THE EXECUTABLE FILE FROM THE ENCAPSULATED ~304
FILE FOR TRANSFER TO THE TARGET COMPUTER

v

TRANSFERING THE EXECUTABLE FILE TO THE TARGET COMPUTER ™~ 395

Y

EXECUTING THE EXECUTABLE FILE AT THE TARGET COMPUTER - ™~ 308

FIG. 3

US 9,164,750 B2

1
MANAGING TARGET COMPUTER USING
ENCAPSULATED FILE

RELATED APPLICATIONS

The patent applications “System And Method Of Using A
Transactional Unit Comprised Of Transactional Subunits”,
by Julio Cesar Arpirez Vega, U.S. Ser. No. 10/375,083, and
“Method For Managing Plurality Of Target Computers Using
A Management Computer”, by Julio Cesar Arpirez Vega and
Miguel Murillo Condon, U.S. Ser. No. 10/375,176, which are
filed concurrently with the present application are incorpo-
rated herein by reference.

BACKGROUND

Some computer networks use a management computer to
configure target computers. For example, in an Internet data
center, a management computer can configure a large number
of target computers to provide data and other information to
users across the Internet.

New operations can be added to the target computers of a
network using the management computer. In one example,
files including code and documentation are used to add opera-
tions to the network. The files can include source code,
scripts, third-party libraries, and deployment descriptors. The
transfer of these files to the management computer for con-
figuring a target computer can be difficult when, for example,
a large number of files is involved. Further, since the files for
an operation can be located in different directories of the
management computer, it can be difficult to modify, update or
move these files.

SUMMARY

Exemplary methods are disclosed for processing an encap-
sulated file ata management computer. An exemplary method
comprises accessing an encapsulated file at a management
computer. The encapsulated file contains plural files and a
deployment descriptor. The deployment descriptor is used to
update the management computer about the plural files. A
function is executed using at least one of the plural files.

Exemplary embodiments of a management computer
include a processor configured to access an encapsulated file
containing plural files and a deployment descriptor. The pro-
cessor is configured to use the deployment descriptor to
update the management computer about the plural files and
configured to cause execution of a function using at least one
of'the plural files. The management computer is configured to
store the plural files.

Exemplary methods are disclosed for processing an encap-
sulated file ata management computer. An exemplary method
comprises accessing an encapsulated file containing plural
files at a management computer. At least one of the plural files
is an executable file for execution on a target computer. The
executable file is extracted from the encapsulated file for
transfer to the target computer.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings provide visual representa-
tions which will be used to more fully describe the represen-
tative embodiments disclosed herein and can be used by those
skilled in the art to better understand them and their inherent
advantages. In these drawings, like reference numerals iden-
tify corresponding elements and:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a flow chart illustrating steps for processing an
encapsulated file at a management computer.

FIG. 2 illustrates a management computer for processing
an encapsulated file.

FIG. 3 is a flow chart illustrating an exemplary method of
processing an encapsulated file.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 is a flow chart illustrating an exemplary method of
processing an encapsulated file. The method can be imple-
mented using a computer. A computer-readable medium can
contain a program which executes the method for processing
an encapsulated file at the management computer (e.g., a
computer used to program, control, monitor and/or oversee
network operations associated with one or more target com-
puters).

In step 102, an encapsulated file containing plural files and
a deployment descriptor is accessed. The encapsulated file
can, for example, be constructed by a user at a user interface,
and transferred to the management computer. The manage-
ment computer can then use the encapsulated file to configure
(or reconfigure) one or more target computers.

As used herein, a “file” is a collection of data associated
with an explicit or implicit file name. An “encapsulated file”
is a file that contains more than one file and can be transferred
or otherwise manipulated using a single explicit or implicit
file name. Examples of encapsulated files include ZIP files,
Java Archive files (JAR files) or any other file containing
plural files. The encapsulated files can be Plug-in ARchive
(PAR) files using a PAR extension. The PAR files can con-
form to the JAR format. The plural files can include execut-
able files. As used herein, a “deployment descriptor” is any
file, text, or other information that can be used to update the
management computer about the plural files.

In one embodiment, the encapsulated file is data com-
pressed (e.g., by the user interface). This reduces the size of
the encapsulated file (e.g., for the encapsulated file to be
transferred over a computer network to the management com-
puter).

The encapsulated file can include logic and data for new
operations (e.g., operations to be implemented at one or more
target computers). For example, the encapsulated file can
include java source code, (java files), generated code includ-
ing class files, documentation, third-party library, executable
files such as scripts, environment variable settings, and a
deployment descriptor.

The encapsulated file can contain files to add functionality
to a management computer. For example, files used for UNIX
configuration operations can be included into the encapsu-
lated file. Including such files in an encapsulated file (e.g., in
a single file) can simplify the transfer of the files and the
manipulation of the files at the management computer. In one
example, accessing the encapsulated file comprises receiving
the encapsulated file from another portion of the management
computer.

In step 104, the deployment descriptor is used to update the
management computer about the plural files. The deployment
descriptor can be used to associate a function with one of the
plural files. In one embodiment, the deployment descriptor
includes an indication of tasks that can be executed using the
plural files of the encapsulated file. The indication can be used
by the management computer to update the management
computer to allow a function, such as a type of target com-
puter configuration. The function can include one or more
tasks.

US 9,164,750 B2

3

The deployment descriptor can indicate the version of the
PAR or other encrypted file, name of the PAR or other
encrypted file, and/or a deployment mode of the plural files
(for example, whether the files are to be copied to a target
computer). The deployment descriptor can be used to indicate
libraries for use with one or more of the plural files. The
deployment descriptor can also be used to indicate locking
arguments for the files, tasks or functions indicating which
other files, tasks or functions should, for example, be pre-
vented from concurrent operation on a target computer. The
use of locking arguments can avoid conflicts in the operation
of the functions.

The deployment descriptor can define characteristics of the
encapsulated file and thus indicate to the management com-
puter how to use the plural files of an encapsulated file. For
example, the deployment descriptor can specify whether the
executable files for the encapsulated files should be remotely
copied to a target computer, or whether it can be assumed that
the executable files already exist on the target computer or are
already accessible to the target computer. In one example, the
encapsulated file can be considered to have two main parts: a
declarative part including the deployment descriptor and
environment variable settings that define configurable behav-
ior; and a procedural part including executable files.

In step 106, a function is executed using at least one of the
plural files. The functions can include tasks or combinations
of tasks. The functions can include configuration of a target
computer or other device. The execution of the function can
include the transfer and/or execution of an executable file.
Executable files include compiled or uncompiled code that
can be executed at the target computer. The executable files
can include scripts which are programs written in an inter-
preted programming language such as Perl, Tcl/Tk,
PYTHON, VBA, DOS batch file, COM automation, or any
other scripting language. Scripts are not compiled and pro-
vide flexibility.

In one embodiment, the function includes the transfer of an
executable file to a target computer. The execution of the
function does not require the transfer of an executable file to
the target computer. For example, the function can be a
remote procedure call, such as a Java Remote Method Invo-
cation (RMI) call, made to the target computer.

After the encapsulated file is received, the function can be
executed without restarting the management computer. In one
example, the deployment descriptor is used to update a map-
ping file or folder. The mapping file or folder associates files
from the encrypted file with functions that use these files. The
management computer can use the mapping file or folder to
find the files needed for a function. When an encrypted file is
received, the mapping file or folder can be updated without
restarting the management computer. This allows a new func-
tion to be added without restarting the management computer.
For example, with Java based systems, dynamic class loading
can be used.

The management computer can use the encapsulated file to
configure a target computer. The execution of the function can
include executing the function on a target computer.

FIG. 2 illustrates an exemplary embodiment of a manage-
ment computer 200 within a system, or network 201. The
management computer 200 comprises a processor 204 and
memory 212. The processor 204 is configured to access an
encapsulated file 208 containing plural files and a deployment
descriptor 207. One of the plural files can be an executable file
209. The processor 204 is configured to use the deployment
descriptor 207 to update the management computer 200 about
the plural files. The deployment descriptor 207 can be used to
associate a function with one of the plural files. In one

10

20

25

30

35

40

45

50

55

60

65

4

embodiment, the deployment engine software 202 executing
at the processor 204 uses the deployment descriptor to update
the mapping folder 211.

The processor 204 is configured to cause execution of a
function using at least one of the plural files. For example, the
processor can be configured to use the encapsulated file to
configure a target computer. The processor can initiate the
execution of the function on a target computer. The memory
212 is configured to store the plural files.

In one embodiment, after the encapsulated file is received,
the function is executed without restarting the management
computer. The mapping folder 211 can be updated with asso-
ciations between functions and the plural files as the encap-
sulated files are received. The management computer 200 can
use the updated mapping folder 211 to determine which files
are needed for a new function without restarting.

One of the plural files can be an executable file which is
transferred to a target computer. The system 201 can include
the target computer 216 configured to execute the function.

The exemplary FIG. 2 system 201 includes a management
computer 200 with deployment engine software that can
deploy encapsulated files in the management computer.
Deployment engine 202 can include software running on a
processor 204 at management computer 200 to receive the
encapsulated file 208. The encapsulated file 208 contains
plural files, including the executable file 209, and deployment
descriptor 207. The deployment can include unencapsulating
the encapsulated file, and storing the plural files within the
management computer. Additionally, the mapping folder or
file 211 can be updated with information concerning the
plural files. In one example, the deployment engine software
deploys the encapsulated file such that it can be read by
resource manager software 210 using an application pro-
graming interface (API).

In an exemplary embodiment, the plural files including the
executable file are available to resource manager software at
the management computer. In FIG. 2, the resource manager
software 210 can access executable files using API 214.

The management computer can use the encapsulated file to
configure the target computer. In the FIG. 2 example, the
management computer sends the executable file to one or
more of the target computers 216, 218, or 220. In one
example, the management computer provides instructions to
the target computers to execute the executable files. The
encapsulated file need not contain an executable file, and an
executable file need not be transferred to a target computer.

In an exemplary embodiment, the encapsulated file con-
tains directory information for the plural files (e.g., so that the
management computer can determine contents, and/or path
and/or file types included in the encapsulated file). An exem-
plary encapsulated file is as follows:

CAWINDOWS\TEMP\UXOS.par

Name Size Path
par.xml 10,975 manifest\
HP-UXiamakekey 20,480 files\
SunOSiamakekey 7,060 files\
addChmod.sh 819 scripts\
addDir.pl 7,290 scripts\
addIP.sh 12,873 scripts\
addUser.sh 8,032 scripts\
addUserToGroup.pl 6,623 scripts\
createGroup.pl 2,705 scripts\
disFTPpub.sh 1,207 scripts\
enFTPpub.sh 1,935 scripts\
IAPerlCommon.pm 14,121 scripts\

US 9,164,750 B2

5

-continued

CAWINDOWS\TEMP\UXOS.par

Name Size Path

libscripts 5,788 scripts\

removeDir.pl 2,522 scripts\

removeGroup.pl 2,716 scripts\

rmIP.sh 7,146 scripts\

rmUser.sh 1,543 scripts\

rmUserFmGroup.pl 7,374 scripts\

UXOS.class 6,468 classes\com\hp\oviactivator\plugins\
UXOS.java 49,669 src\com‘hploviactivator\plugins\

The encapsulated file can contain a number of files, each
having a file name. Each file is also associated with a path
which can be used by the management computer to construct
a directory to store the file. The above example includes the
deployment descriptor file, “par.xml”, executable files such
as “addIP.sh” (a script file), java code such as “UXOS java”,
and class file information such as “UXOS.class”.
Below is an example of the deployment descriptor file,
“par.xml”.
<?xml version="1.0" encoding="UTF-8"?>
<1--> <Copyright © 2002 Hewlett-Packard Company. All
Rights Reserved-->
<Plugin version “1.0”>
<!--
sfesfeosk
Plugin Archive Manifest File.
> <hp OpenView service activator.
sfesfeosk
>
<Name>UXOS</Name>
<Version major="1" minor="0" revision="0"/>
<Description> A common set of Perl functions.
</Description>
<ClassName>com.hp.ov.activator.plugins. UXOS</
ClassName>
<NameSpace type=“"GLOBAL”/>
<DeploymentModel>ON_DEMAND</Deployment-
Model>
<Lock>
<Argument>1</Argument>
</Lock>
<Configuration>
<Param name="FILENOLIST” value="//opt/var/ust/
home/users”/>
<Param name="LOGGING” value="1"/>
</Configuration>
<!--Atomic tasks-->
<AtomicTasks>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_addUser</Name>
<Argument>machine</Argument>
<Argument>login</Argument>
<Argument>passwd</Argument>
<Argument>uid</Argument>
<Argument>homedir</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_addUser atomic task to
add a user.
</Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_rmUser</Name>
<Argument>machine</Argument>

10

20

25

30

35

40

45

50

55

60

65

6

<Argument>login</Argument>

<Argument>passwd</Argument>

<Argument>uid</Argument>

<Argument>homedir</Argument>

<Argument>group</Argument>

<Description>Use the UXOS_rmUser atomic task to
remove a user.

</Description>

</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_createGroup</Name>
<Argument>machine</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_createGroup atomic
task to create a new group.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_removeGroup</Name>
<Argument>machine</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_removeGroup atomic
task to remove a group.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_addUserToGroup</Name>
<Argument>machine</Argument>
<Argument>user</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_addUserToGroup
atomic task to add a user to a group.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_rmUserFmGroup</Name>
<Argument>machine</Argument>
<Argument>user</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_rmUserFmGroup
atomic task to remove a user from a group.</De-
scription>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_removeDir</Name>
<Argument>machine</Argument>
<Argument>dirPath</Argument>
<Description>Use the UXOS_removeDir atomic
task to remove a directory structure.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_addAliasIP</Name>
<Argument>machine</Argument>
<Argument>ipaddr</Argument>
<Argument>itfname</Argument>
<Argument>subnetmask</Argument>
<Argument>broadcastaddr</Argument>
<Description>Use the UXOS_addAliasIP atomic
task to add an alias IP address to an interface.</
Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_rmAlias|P</Name>
<Argument>machine</Argument>
<Argument>ipaddr</Argument>
<Argument>itfname</Argument>
<Argument>subnetmask</Argument>
<Argument>broadcastaddr</Argument>

US 9,164,750 B2

7

<Description>Use the UXOS_rmAliasIP atomic task
to remove an alias IP address from an interface.</
Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_chmod</Name>
<Argument>machine</Argument>
<Argument>permissions</Argument>
<Argument>object</Argument>
<Description>Use the UXOS_chmod atomic task to
change the permissions on a directory or a file.</
Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_enFTPUser</Name>
<Argument>machine</Argument>
<Argument>username</Argument>
<Description>Use the UXOS_enFTPUser atomic
taks to allow fip access to a user’s account.</De-
scription>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_disFTPUser</Name>
<Argument>machine</Argument>
<Argument>username</Argument>
<Description>Use the UXOS_disFTPUser atomic
task to deny ftp access to a user’s account.</De-
scription>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_addUserNIS</Name>
<Argument>machine</Argument>
<Argument>login</Argument>
<Argument>passwd</Argument>
<Argument>uid</Argument>
<Argument>homedir</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_addUserNIS atomic
task to add a user to the NIS directory service.</
Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_rmUserNIS</Name>
<Argument>machine</Argument>
<Argument>login</Argument>
<Description>Use the UXOS_rmUserNIS atomic
task to remove a user from the NIS directory ser-
vice.</Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_createGroupNIS</Name>
<Argument>machine</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_createGroupNIS
atomic task to add a new group to the NIS directory
service.</Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_removeGroupNIS</Name>
<Argument>machine</Argument>
<Argument>group</Argument>
<Description>Use the UXOS_removeGroupNIS
atomic task to remove a group from the NIS direc-
tory service.</Description>
</Task>
<Task exported="true” execution="ON_LINE">
<Name>UXOS_addUserToGroupNIS</Name>

10

15

20

25

30

35

40

45

50

55

60

65

8

<Argument>machine</Argument>
<Argument>group</Argument>
<Argument>login</Argument>
<Description>Use the UXOS_addUserToGroupNIS
atomic task to add a user to an existing group in the
NIS directory service.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_rmUserFmGroupNIS</Name>
<Argument>machine</Argument>
<Argument>group</Argument>
<Argument>login</Argument>
<Description>Use the UXOS_rmUserFmGroupNIS
atomic task to remove a user from an existing group
in the NIS directory service.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_setDiskQuota</Name>
<Argument>machine</Argument>
<Argument>login</Argument>
<Argument>filesystem</Argument>
<Argument>softblocks</Argument>
<Argument>hardblocks</Argument>
<Argument>softinodes</Argument>
<Argument>hardinodes</Argument>
<Description>Use the UXOS_setDiskQuota atomic
task to add a disk quota for a user on a given file
system.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_addExport</Name>
<Argument>machine</Argument>
<Argument>directory</Argument>
<Argument>hostname</Argument>
<Description>Use the UXOS_addExport atomic task
to allow a host to mount a directory or file.</De-
scription>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_removeExport</Name>
<Argument>machine</Argument>
<Argument>directory</Argument>
<Argument>hostname</Argument>
<Description>Use the UXOS_removeExport atomic
task to deny a host from mounting the specified
directory or file.</Description>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_mountNFS</Name>
<Argument>machine</Argument>
<Argument>hostname</Argument>
<Argument>path</Argument>
<Argument>directory</Argument>
<Description>Use the UXOS_mountNFS atomic
task to mount a remote NFS directory.</Descrip-
tion>
</Task>
<Task exported="“true” execution="ON_LINE”>
<Name>UXOS_umountNFS</Name>
<Argument>machine</Argument>
<Argument>directory</Argument>
<Description>Use the UXOS_umountNFS atomic
task to unmount a remote NFS directory.</Descrip-
tion>
</Task>
</AtomicTasks>
<!--Scripts section-->

US 9,164,750 B2

<Scripts>

<Script name="TAPerlCommon”
file="TAPerlCommon.pm”>
<Description> A common set of Perl functions.
</Description>

</Script>

<Script name="addUser”
interpreter="ksh”>
<Description> Adds a User.

file="addUser.sh”

</Description>
</Script>
<Script name="rmUser” file="“rmUser.sh”

interpreter="ksh”>
<Description> Removes a User.
</Description>

</Script>

<Script name="createGroup”
interpreter="perl”>
<Description> Creates a group.
</Description>

</Script>

<Script name="removeGroup” file="removeGroup.pl”
interpreter="perl”>
<Description> Removes a group.
</Description>

</Script>

<Script name="addUserToGroup”
file="addUserToGroup.pl” interpreter="perl”>
<Description> Adds a User to a group.
</Description>

</Script>

<Script name="rmUserFmGroup”
file="“rmUserFmGroup.pl” interpreter="perl”>
<Description> Removes a User from a group.
</Description>

</Script>

<Script name="addDir”
interpreter="perl”>
<Description> Creates a directory structure.
</Description>

</Script>

<Script name="removeDir”
interpreter="perl”>
<Description> Removes a directory structure.
</Description>

</Script>

<Script name="addIP”
interpreter="ksh”>
<Description> Adds an alias IP address to an inter-

file="createGroup.pl”

file="addDir.pl”

file="removeDir.pl”

file="addIP.sh”

face.
</Description>
</Script>
<Script name="rmIP” file="rmIP.sh”

interpreter="ksh”>
<Description> Removes an alias I[P address from an
interface.

</Description>

</Script>

<Script name="“addChmod”
interpreter="ksh”>
<Description> Change mode on a file.
</Description>

</Script>

<Script name="“disFTPpub”
interpreter="ksh”>
<Description> Disable FTP access for a user.
</Description>

file=*addChmod.sh”

file="disF'TPpub.sh”

15

20

25

30

35

40

45

50

55

60

65

10

</Script>

<Script name="enFTPpub”
interpreter="ksh”>
<Description> Enable FTP access for a user.
</Description>

</Script>

<Script name="libscripts” file="libscripts”>
<Description> Common shell functions.
</Description>

</Script>

</Scripts>

<!--Files section-->

<Files>

<File name="SunOSiamakekey”
file="SunOSiamakekey”/>

<File name="“HP-UXiamakekey”
makekey”/>

</Files>

</Plugin>

In the above example, the deployment descriptor is an
XML file. The tags in the XML file can indicate how to
interpret the information in the XML file. In one example, the
deployment descriptor can be used to associate a function
with a file in the encapsulated files. For example, the file
“addUser.sh” is indicated as being a script that is associated
with an “add user” function by the deployment descriptor
tags.

In one example, a Document Type Definition (DTD), is
used to define tags in the deployment descriptor XML file.
Document Type Definitions are used for XML files and allow
the XML files to be correctly parsed for an application.

The example of FIG. 2 shoes a service builderunit 221. The
service builder unit 221 includes an encapsulated file con-
structor user interface 222. This user interface allows users to
specify files which can be grouped together to produce an
encapsulated file. In one example, the user interface encap-
sulates the plural files using a protocol such as the .JAP
protocol. The encapsulated file can then be transferred to the
management computer 200. In one example, the deployment
engine 202 takes the encapsulated file and processes it so that
it can be accessed by the resource manager software 210. For
example, tags in the deployment descriptor can be used by the
resource manager software 210 to identify the functions asso-
ciated with the plural files. A mapping folder or file 211 can
then be constructed to indicate the new functionality. Higher
level software 223 can produce instructions across an appli-
cation programming interface 224 to the resource manager to
perform operations that can use the plural files.

The higher-level software 222 can include a compound
task transaction controller. The compound task transaction
controller can include a transaction manager, a resource
adapter connector, and an Enterprise Java Bean (EJB) unit.
The higher-level software can also include a user interface
workflow manager and a tracking unit. In one example, the
higher-level software 222 receives requests to execute a com-
pound task including a number of atomic tasks. An exemplary
system is described in the patent application “System And
Method Of Using A Transactional Unit Comprised Of Trans-
actional Subunits”, by Julio Cesar Arpierz Vega, U.S. Ser. No.
10/375,083, filed concurrently with the present application
and incorporated herein by reference. For example, the
atomic tasks can be undone under the control of the manage-
ment computer. Code for atomic tasks can be stored within
one of the plural files. In one example, the management
computer sets up a table, such as a mapping file or folder, to
indicate which of the plural files contains the requested
atomic task code.

file="enFTPpub.sh”

file="HP-UXia-

US 9,164,750 B2

11

In one example, the encapsulated file enables a number of
related operations. For example, the encapsulated file can
enable UNIX operations including add user, remove user and
the like. Some of the operations can include steps in which the
executable file is transferred from the management computer
to a target computer and then the executable file executes at
the target computer.

The memory can store the plural files within the encapsu-
lated file such as encapsulated file 213. Alternately, the plural
files can be separately stored in the memory. In one example,
the encapsulated file 208 contains directory information, as
already mentioned, that allows the construction of a directory
within the memory 212 to store the plural files. The manage-
ment computer can use the encapsulated file to configure the
target computer. In one example, the configuring of the target
computer causes the executable file to execute at the target
computer.

In one embodiment, the encapsulated file 208 is data com-
pressed. Data compression reduces the size of the encapsu-
lated file and thus can reduce the amount of data transferred
across a computer network to the management computer.

In an exemplary embodiment, the resource manager soft-
ware 210 at the processor 204 is used to transfer the execut-
able file to the target computer 220. Any suitable file transfer
protocol can be used. In one example, the executable file is
transferred during a shell session, and the management com-
puter can use the shell session to control the target computer.

In one example, the management computer stores an indi-
cation of whether the target computer has the executable file.
If the target computer already has the executable file, the
executable file does not have to be transferred in the shell
session. The executable file can be transferred along with
environment variables for use in running the executable file at
the target computer.

In the example of FIG. 2, deployment engine 202 is used to
deploy the encapsulated file 208 at the management com-
puter. The target computer 220 can be configured to execute
the executable file transferred from the management com-
puter.

A system specification for encapsulated files can be fol-
lowed such that new options can be added into the manage-
ment computer using an encapsulated file following the sys-
tem specification. The creation of encapsulated files that
comply with the system specification can be aided by the use
of the service builder. For example, the system specification
can be associated with the PAR format.

In one example, the resource manager software is informed
when an encapsulated file has been loaded into the manage-
ment computer. The resource manager software can extend
the capabilities of the system by adding new operations with-
out restarting. Enabling operations with an encapsulated file
means that the resource manager software code need not be
changed as new operations are added. As long as the opera-
tions enabled by the encapsulated files conform to the system
specification, any operation can be invoked by the resource
manager without code changes to the resource manager soft-
ware.

Service builder software of unit 221 can use the encapsu-
lated file constructor user interface 222 for the generation of
the files and the packing of'the files into the encapsulated files.
Use of an encapsulated file permits modification of the envi-
ronment variables and deployment descriptor without recom-
piling the source code. Simply by modifying these attributes
using the user interface and redeploying the new encapsulated
file, characteristics of the system can be changed without a
recompilation of source code. Customers can use the user
interface to modify the operations enabled by the encapsu-

35

40

45

50

55

60

65

12

lated file without being concerned with compilation issues or
modification of source code to change certain attributes.

In one example, the system 201 comprises an Internet data
center. The Internet data center can provide services to users
across the Internet. One or more target computers can be
configured by the management computer as described herein
to provide such services.

FIG. 3 is a flow chart illustrating an exemplary method of
processing an encapsulated file at a management computer. In
step 302, an encapsulated file containing plural files is
accessed. According to an exemplary embodiment, at least
one of the plural files contains an executable file for execution
on a target computer.

In step 304, the executable file is extracted from the encap-
sulated file for transfer to the target computer. In an exem-
plary embodiment, the encapsulated file is unencapsulated
and the plural files, including the executable file, are stored at
a location where the executable file can be transferred to the
target computer. The unencapsulation can be performed fol-
lowing a standard such as the ZIP or JAR standards.

Alternatively, the plural files can be kept within the encap-
sulated file. Before the transfer of the executed file to the
target computer, the executable file can be extracted from the
encapsulated file.

In an exemplary embodiment, the accessing of the encap-
sulated file includes receiving the encapsulated file from
another location. The plural files can be encapsulated into the
encapsulated file and then provided to the management com-
puter. The encapsulation can be performed using software
that constructs a ZIP or JAR file.

In step 306, the executable file is transferred to the target
computer. In step 308, the executable file is executed at the
target computer. The execution of the executable file at the
target computer can be part of the configuration of the target
computer.

It will be appreciated by those of ordinary skill in the art
that the system and method can be embodied in other specific
forms without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restrictive.
The scope of the system and method is indicated by the
appended claims rather than the foregoing description, and all
changes which come within the meaning and range of equiva-
lents thereof are intended to be embraced therein.

What is claimed is:

1. A method comprising:

receiving, at a management computer, an encapsulated file
including a plurality of files and a deployment descrip-
tor, said deployment descriptor including information
describing a plurality of configuration tasks performed
using the plurality of files, the plurality of files including
an executable file;

extracting, by the management computer, the plurality of
files and the deployment descriptor from said encapsu-
lated file;

storing, on the management computer, the plurality of files
extracted from the encapsulated file;

using, by the management computer, the deployment
descriptor extracted from the encapsulated file to iden-
tify associations between the plurality of configuration
tasks and the plurality of files extracted from the encap-
sulated file;

updating, by the management computer, a mapping ele-
ment to include the associations;

using, by the management computer, the mapping element
to find at least one of the plurality of files extracted from

US 9,164,750 B2

13

the encapsulated file needed for a first configuration task
of' the plurality of configuration tasks; and

performing, by the management computer, the first con-

figuration task of the plurality of configuration tasks
using the at least one of the plurality of files extracted
from the encapsulated file to reconfigure a target com-
puter other than the management computer.

2. A method as recited in claim 1 wherein performing the
first configuration task includes said management computer
executing said executable file.

3. A method as recited in claim 2 wherein said executing
includes making a remote procedure call to said target com-
puter.

4. A method as recited in claim 1 wherein performing the
first configuration task includes:

said management computer transferring said executable

file to said target computer; and

causing said target computer to execute said executable

file.
5. A method as recited in claim 4 wherein said extracting
said executable file from said encapsulated file occurs before
said executable file is transferred to said target computer.
6. A system comprising non-transitory computer-readable
storage media, said media being encoded with code config-
ured to, when executed by a management computer having
one or more processors, causes the management computer to
implement a method including:
determining a configuration function to be applied to a
target computer other than said management computer;

identifying required files required by said function, said
identifying including accessing, by the management
computer, an encapsulated file containing plural con-
tained files and a deployment descriptor, said deploy-
ment descriptor including information associating some
of said plural contained files with a configuration func-
tion requiring that contained file, said plural contained
files including an executable file, the information
describing a plurality of configuration tasks performed
using the plural contained files;

10

15

20

25

30

35

14

said management computer extracting the deployment
descriptor and the plural contained files including said
executable file from said encapsulated file;

storing, on the management computer, the plural contained

files extracted from the encapsulated file;
identifying, using the deployment descriptor extracted
from the encapsulated file, a plurality of associations
between the plurality of configuration tasks and the plu-
ral contained files extracted from the encapsulated file;

updating, by the management computer, a mapping ele-
ment to include the associations;

using, by the management computer, the mapping element

to find at least one of the plurality of files extracted from
the encapsulated file needed for a first configuration task
of the plurality of configuration tasks; and

performing, by said management computer, the first con-

figuration task of the plurality of configuration tasks
using the at least one of the plurality of files extracted
from the encapsulated file to reconfigure said target
computer.

7. A system as recited in claim 6 wherein said executable
file, when executed by one or more processors, causes said
management computer to make a remote procedure call to
said target computer.

8. A system as recited in claim 6 further comprising a
deployment engine for processing said encapsulated file so
that it can be accessed by said management computer.

9. A system as recited in claim 6 wherein said code pro-
vides for transferring said executable file to said target com-
puter for execution by said target computer to effect configu-
ration of said target computer.

10. A system as recited in claim 9 wherein said extracting
said executable file from said encapsulated file occurs before
the encapsulated file is transferred to said target computer.

11. A system as recited in claim 6 further comprising said
management computer, said management computer includ-
ing said storage media.

#* #* #* #* #*

